Simple Method for Predicting Drainage from Field Plots’
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ABSTRACT

When the one-dimensional moisture flow equation is simpli-
fied by applying the unit gradient approximation, a first-order
partial differential equation results. The first-order equation
is hyperbolic and easily solved by the method of P. D. Lax.
Three published K(6) relationships were used to generate three
analytical solutions for the drainage phase following infiltra-
tion. All three solutions produced straight lines or nearly
straight lines when log of total water above a depth was plotted
versus log of time. Several suggestions for obtaining the required
parameters are presented and two example problems are in-
cluded to demonstrate the accuracy and applicability of the
method.
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WATER DRAINING from soil profiles is an important
factor in many contemporary and environmen-
tal problems. In the Northern Great Plains this water
is responsible for the annual destruction of thousands
of hectares of cropland by contributing to the forma-
tion and growth of saline seeps (Brown and Ferguson,
1973; Ferguson et al, 1972). In some irrigated areas,
subsurface drainage water contributes to river pollu-
tion (Wierenga and Patterson, 1972).

Estimation of the rate and quantity of drainage
water contributing to these problems is essential to
finding feasible solutions. But estimating these vari-
ables requires predicting the hydrologic behavior of
large areas and frequently the characterization of
many soils under field conditions. This necessitates
the use of simple, yet accurate, models which contain
parameters that can be obtained on site as quickly
as possible.

This paper considers a special class of models based
on the assumption of a unit gradient of the total po-
tential head. Several studies (cf. Black et al., 1969,
and Davidson et al., 1969, among others)-have shown
that a unit gradient often exists during the redis-
tribution and drainage phases when a uniform profile
is draining freely in the absence of a shallow water

table. Three solutions are presented, each based upon

a different conductivity equation. Two example prob-
lems are further included to demonstrate the use of
the present approach.

THEORETICAL CONSIDERATIONS

The equation for predicting the one-dimensional
flow of water in porous materials is (Taylor and Ash-
croft, 1972):
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f(zt) is the volumetric moisture content,
time,

depth (positive downward),

K(4) is the hydraulic conductivity, and
H(4,z) = h(f)z ie, H(hydraulic head) =
h(pressure head) — z(gravitational head).
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When a unit gradient in the total head H is assumed,
0H/3z = —1, Eq. [1] becomes

00 _§£ dK 94
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When only the drainage phase is considered, Eq. [2]
may be solved subject to the conditions

9. ifz <0
Omif 2> 0

where the subscripts ¢ and m denote minimum and
maximum obtainable values, respectively.

When the profile is saturated initially, 6. equals
the moisture content at saturation, §,. In its general
case, however, §» may be less than 4, for example,
following an irrigation with a flux less than the satu-
rated hydraulic conductivity.

The initial value problem given by Eq. [2] and
[3], also known as a Cauchy or a characteristic value
problem, has been the subject of many studies in
mathematical and engineering literature (cf. Lax, 1972;
Aris and Amundson, 1973, where Aris and Amundson
present examples and are an excellent introduction
to this subject). The characteristics of Eq. [2] are
obtained by solving the following system of ordinary
differential equations written in standard form.

d _ dz _ dg
T T aKds - o [4]
The right hand expression implies that d¢ must be
zero or 9 remains constant for certain values of z and

t. Since 6 is constant, dK/dg will be constant and the
first two terms in Eq. [4] can be integrated to give

6(z,0) = 6i(z) = (3]

z—dK

(5]

where

dx

1=

b
These results imply that a set of curves (i.e. charac-
teristics) propogate from the initial condition 4;. If
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Fig. 1—Characteristics defined by Eq. [5]. Solid lines fill
region where water content is unchanging and dashed lines
fill region where desorbtion is taking place.

one could travel along one of these curves with an
instrument that sensed moisture content, the instru-
ment readings would not change.

The characteristics of Eq. [2] subject to [3] are
shown in Fig. 1 as parallel solid lines propagating
from ¢t=0 and lie in the region given by z > 4t. The
wedge-shaped region defined by 0 < z < 4t and shown
in Fig. 1 as being filled with dashed lines is devoid of
characteristics when the usual mathematical methods
are applied. Lax (1972) studied Eq. [2] and showed
that unless #;(z) is a monotonically increasing func-
tion of z then no continuous solution exists in this
region (0 < z < At). If discontinuous solutions were
allowed Lax demonstrated that several distinct solu-
tions exist to Eq. [2] with the same initial condition
[3]. Lax noted that only one solution exists in the
region (0 < z < At) such that the characteristics do
not intersect (Note: Intersecting characteristics indi-
cate the development of a shock wave or a mathemati-
cal discontinuity). The Lax solution is given by

(f(z/t) for 0 < z < At
0(zt) = (6]
Om for z > At

where the function f is defined such that
dK
) =0 [7)
provided that
d2K/dg? s« 0 for all 6. [8]

Note here that ¢ defined by Eq. [6] is continuous
throughout z but that the derivative of § with respect
to z is two valued at z = 0 and z = At, depending
whether the limit is taken from the “left” or the
“right.” In general, if Eq. [8] is violated Eq. [6]
becomes multivalued, or imaginary, imaginary solu-
tions are easily obtained by choosing K(f) as a cubic
polynomial, solving Eq. [6] and determining values
of the polynomial coefficients where Eq. [8] is vio-
lated.

The behavior of the Lax solution for monotonically

6, cm3/cm3

ZI=At2

Fig. 2—Typical behavior of Lax solutions with a monotonically
increasing K(¢). Points denoted by ¢ and t, are also de-
noted in Fig. 1.

increasing functions K(#) is schematically shown in
Fig. 2 where the desorption of a uniform profile dur-
ing the early drainage phase is considered (the desorp-
tion zone is still confined to the upper part of the
profile, i.e., z < At). The lower boundary of the de-
sorption zone is given by Eq. (5), with §; = @. This
boundary propagates downward at a constant rate A4
= dK/df|en. The method for obtaining solutions can
be summarized in the following three-step algorithm
based on the Lax solution scheme:

1) Differentiate a chosen K(#) with respect to ¢ obtain-

ing dK/dg.

2) Replace the resulting dK/dg term with z/t.

3) Solve the resulting expression explicitly for § =

f(z/t) = 0(z,t).

Three frequently used K(§) relationships found in
current literature are presented in Table 1 with all
steps in the Lax algorithm. Similar solutions have
been published previously for the K(g) relationships
referenced as Davidson et al. (1969) and Watson
(1967). [See Davidson et al. (1969) and Gardner et
al. (1970), respectively.] But unlike the previous so-
lutions, found by methods apparently analogous to
the separation of variables, the Lax solutions have no
arbitrary constants arising from integration. More im-
portant, however, the Lax solutions are valid for all
times ¢t = 0, i.e,, also for the early drainage phase, a
phase which has to date been largely ignored.

It should be noted that the values of 4. (ie., the
minimum obtainable value for the moisture content)
in models of Watson (1967) and Davison et al. (1969)
(Table 1) are assumed to be zero. Although this does
not present any problems for the Watson model, the
model based on the exponential conductivity curve
will exhibit a mathematical peculiarity in this respect.
Because both K and its slope dK/df are non-zero
when ¢ = 0, another characteristic will emanate from
the region (z < 0, t = 0) describing the downward
propagation of the zero water content. The position
of zero moisture content is again given by Eq. [5],
whereby it is understood that §; is now zero. Although
this particular case is physically unobtainable (since
no one has observed a dry layer of measurable depth,
immediately following an irrigation), the complete
and correct solution is
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Table 1—Algorithm steps for obtaining Lax’s solution for the given hydraulic conductivity (K) water content () relations.

Steps to the Lax solution
Source of K(6) K@)t Step 1% Step 2 Step 3
18 (1-808 1-8)8 1 —
Watson (1967) K=Km(oi) c(le;’=A(oi) %=A(9i) 0=0m(i)au 8)
Devea " K=K, expald-6,) A - Aexpalt-0) Z=Aexpalb-0)  6=6,+Lin(Z)
Brooks & Corey = -0 )" 4aK = 06\~ 2 _ 66, - =06, +(0,—6) (= wh
(1964) K=Ky = a=4l) T Tl o+ =0 ()

+ Subscripts m and ¢ denote maximum and minimum obtainable values, respectively.

1 Parameter A defined with Eq. [5].

0 for z < dK/df|e=0-t Results of forming W from the solutions in Table

= 1 1 (see Table 2) are rather surprising since they all
6(zt) = 0m + ;ln(z/At) for dK /df,=o-t <z <dt. yield nearly straight lines when W vs. t is plotted on
Om otherwise [9] log-log paper (provided 6./6; is small). This straight

PARAMETER ESTIMATION

Any solution of Eq. [2] involves parameters that
must be estimated from experimental data. While 6,
and K., can be estimated in principle from direct ob-
servation during the latter stages of infiltration (in
the case of ponding), or from measurerients on soil
cores, the exponential parameters are probably most
easily obtained from nonlinear regression of field data
taken sometime after the entire profile is undergoing
desorption. Although this procedure holds strict-
ly only for uniform profiles, it may be extended to
situations wherein the profile is reasonably uniform
or exhibits some weak layering. This may be done by
considering the total water, W, above a depth, z:

W = W(t) = j; * dz. [10]

This function is generally smoother with depth and
hence more amenable to curve fitting than the mois-
ture contents.

line relationship was apparently first noted by Ogata
and Richards (1957). Wilcox (1959) fitted parameters
to a wide range of soils and also found that the log
W-log t relationship provided a reasonable approxima-
tion of the drainage process. However, Wilcox also
reported that the exponential parameter generally
decreased with depth. It is easily verified that the
total water equations in Table 2 predict the Wilcox
anomaly exactly by ignoring the early drainage phase
and using times 1 and 10 to obtain the exponents in
the Watson model. The resulting exponents will ap-
pear to decrease with depth.

Wilcox (1959) modified the original Ogata-Rich-
ards model by writing the flux at a depth explicitly
as a function of the total water above that depth, and
used the resulting expression to estimate deep drain-
age losses. For the conductivity equations presented
here, the Wilcox flux model results in expressions of
the form K = K(W) (see Table 2), where K(W) was
obtained by eliminating the term z/A4t¢ from W(z,t)
and K(z,t).

To estimate the exponents required by the models
in Table 1, z/At was eliminated from W(z,t) and §(z,t)
and the results given in Table 2. When total water
above a depth is treated as a function of 4, it is ap-

Table 2—Total water (W) above a depth as W(z,t) and W(z,6) and hydraulic conductivity (K) as K(z, ¢} and K(W).

Source of K{f)
Watson Davidson et al. Brooks & Corey
W= Wizt = N z (-8 z z)_ z \nil-n)
(1 5)0,,,z(At) Oz + = [l“(A:) 1] 8.z + (1—n)z(0,,~6,) (74?)
Exponent parameter in terms 9= AW _z _ AW
of discernible quantitiest W, T AW "EW.—Ww,
W= Wi(z,0) = (1—0) 20 z(0—1/a) nz6, + (1 —n)z0
_ N 2 \V1-8) (i) z \U-n)
K=K(zt) = Km(m) Km\4; K"'(I‘)
_ B W \l8 W—w, Un
K=KW) = En(=5w) Knexp(l-alWo=Wa)  Kn(g=rmr )

1 See text for definition of AW.
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Fig. 3—Hydraulic conductivity K(6) for Glendale clay loam.

parent that the exponents can be estimated from sim-
ple regression of average total water above a depth
versus water content at that depth. The true impli-
cation is that parameters can be obtained while con-
ducting the usual evapotranspiration studies without
doing an actual infiltration drainage study. Once the
exponent is estimated and K, estimated from infil-
tration rates, drainage from cropped profiles can be
estimated. The added advantage of this type of analy-
sis is that variation among soils from plot to plot can
be compensated for by using a drainage estimate for
each individual plot.

To obtain a check on the value of exponents com-
puted, the total water equations in Table 2 were
evaluated at z = At and exponents solved for expli-
citly in terms of physical measurements. The quantity
of water lost between ¢t = 0 and the time when desorp-
tion starts at a depth, i.e., Wy, — W(z = At, t), is de-
noted as AW and the results given in Table 2.

APPLICATIONS

Two example problems are now considered to dem-
onstrate the use and accuracy of the unit gradient
method. The first example compares the unit gradient
method with a numerical solution of the complete
flow equation [1], while the second example demon-
strates the application of the method to an actual field
experiment.

Example 1

In this example a large (150 cm long) soil column,
uniformly filled with Glendale clay loam and initially
saturated (6, = 0.52), is allowed to drain freely in the
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Fig. 4—Moisture release curve for Glendale clay loam,

o
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absence of evaporation. The experimental setup of
the column and its soil is described by Dane and Wie-
renga (1975). The initial and boundary conditions
for the numerical model are:

0(20) = 6m 0 <2< 150 ¢ = 0

k2 _ o -0 10
0z
H _ 1 s—150 t>0
oz

The hydraulic functions K(§) and h(§) of the soil are
given in Fig. 3 and 4, respectively. The hydraulic con-
ductivity function, K(4), is well described by the
Brooks and Corey model (Table 1), i.e.:

6 — 0.246\+%*
0.274 )

(fm = 0.52; 4, = 0.246; n = 0.2353). Figure 5 presents
results obtained with the numerical (finite difference
CSMP) solution of Eq. [1] and [11] (Dane and
Wierenga, 1975) with results obtained with the unit
gradient method. The moisture distributions based
upon the latter method are obtained directly by fol-
lowing the three-step algorithm as outlined previously
(see also Table 1):
1. Obtain dK/d§. Hence from [12]:

K(8) = 100 ( [12]

dKk § — 0.246\ 3.25

o = 1551 (ggrr ) [13]
2. Equate the resulting expression to z/t,

z 6 — 0.246\ 3.25

2 = 1551 () [14]

3. Solve for 4,
6 = 0.246 + 0.02858 (z/1)°3977 (0 < z < 1551¢).
[15]

Figure 5 demonstrates that Eq. [15] generates re-
sults which compare well with those obtained with
the numerical solution of Eq. [1], except near the
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Fig. 5—Comparison of unit gradient solution with numerical
solution for predicting water contents.

surface where the approximate solution approaches
§c = 0.246 at z = 0. The largest differences between
the two methods occur at intermediate drainage times
(between 0.3 and 2 days), the maximum deviation
(for z > 25 cm) being about 0.01 cm®/cm?. It is doubt-
tul whether such differences are important when drain-
age from deep profiles is being estimated.

Figure 6 further compares the amount of drainable
water (W — 150-6.) as obtained with the numerical
and the unit gradient solutions. The solid line was
obtained by integrating Eq. [15] over the entire pro-
file, leading to the expression (see also Table 2):

W(150,¢) = 36.90 + 15.318 £-05077 (¢ > 150/1551) [16]

Because of the restriction z < 4t on Eq. [15], Eq.
[16] does not hold for the early drainage phase when
part of the profile is still saturated. For this period
W(150,t) is given by

z 150
W(150,t) = j(;‘oderj;l Omdz

150
= j;) Omdz — Kt =78 — 100t (¢t < 150/1551).
[17]
The use of Eq. [17) constitutes an important im-
provement over earlier drainage models in that it ac-
curately describes drainage at small times, as demon-
strated in Fig. 6. Overall, the unit gradient method
provides results which approach the numerical pre-
dictions; although, the method seems to overpredict
the drainage rate somewhat, especially at intermediate
times (0.10 < ¢ < 0.30).

Thus far in this example, the unit gradient method
was used to predict moisture distributions and amounts
of drainable water in the profile. A demonstration
of how the method can also be used to analyze drain-
age equations like those shown in Table 2 will now
be carried out. Suppose the total water curve in
Fig. 6 given by the CSMP solution is given and one
knows §.. For illustrative purposes, §m» and 4. are
assumed to be the same as before (0.52 and 0.246, re-
spectively). Hence the drainage data can be plotted
in the same way as before (log (W — 86.9) vs. log t).
Ignoring the early drainage phase, the dashed line in
Fig. 6 is given by

W(150,t) = 36.9 + 16.60 t=93% (¢ > 0.3 days).  [18]
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Fig. 6—Comaprison of numerically predicted total drainable
water above 150 cm with unit gradient predictions. During
early drainage phase (times less than value shown with
open circle) only part of the profile is undergoing desorption.

By comparing Eq. [18] with the total water equation
based on the Brooks and Corey model (Table 2), it
is easily shown that n equals 0.2353 and 4 equals
1249.2. Hence from the definition of 4 = K/n(fm —
f.), one obtains K; = 79.6. This value for the satu-
rated hydraulic conductivity is certainly a reasonable
approximation of the “correct” value, i.e., of K; = 100
as originally employed in the numerical solution of
Eq. [1]. Using the value of m, the complete conduc-
tivity equation is (see Table 1)

6 — 0.246)4-30
0.274

which is very close to the original curve shown in Fig.

3. Equation [19] in turn can now be used to predict

moisture distributions within the 150-cm profile, as
discussed before.

K(6) = 79.6 ( [19]

Example 2

This example considers drainage from a field site
containing Gerber silty clay loam, one of the domi-
nant soils of a saline seeped area on the Northern
Great Plains. Some physical characteristics of this soil
are given in Table 3. The values given are represen-
tative of the glacial soils on which many of the saline
seeps occur. The experimental conditions of this ex-
ample are extensively discussed by Sisson (J. B. Sisson,
1972. Hydraulic properties of the Gerber soil. M.S.
Thesis, Montana State Univ., Bozeman) and are brief-
ly summarized in Table 3.

In the fall of 1970, two field plots on the Gerber
soil were established, and neutron access tubes were
installed to allow for an over-winter stabilization
period. The plots were irrigated in the spring of 1971,
one for 4 hours and the other for 24 hours, and cov-
ered with plastic to prevent evaporation. Moisture
contents were determined at 15-cm intervals, at first

Table 3—Physical properties of Gerber silty clay loam.

. Water content
Bulk density

Depth Texture of peds 0.3 bar 16 bars
cm glem® 8 8
0-20 sicl 1.70 31.6 14.0
20-36 gic 1.86 33.7 20.2
36-53 gicl 1.69 28.2 16.0
53-74 sicl 1.69 32.1 14.7
T4-94 sicl 1.59 28.0 13.2
94-122 d 1.62 26.7 12.3
122-198 d 1.86 24.8 11.4
198-244 c 1.86 26.0 10.3
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on a daily basis, later every 2 or 3 days. The observed
values were assumed to be representative for each
15-cm depth increment. Depth to the water table was
> 13.8 m.

The drainage equations for this particular experi-
ment were based on the Watson model (see Tables
1 and 2), Table 4 presents observed and calculated
total water contents, W(z,t), for two times. The drain-
age equations used are:

W(z,t) = 0.820 z1.026 4—0.026 [20]
and

W(st) = 0.312 71088 =0.038, [21]

Both equations were obtained by fitting data to the
Watson model, using a multiple regression program.
The coefficients in Eq. [20] and [21] were based on
soil water content data for z < 105 and z < 180 cm,
respectively, and utilizing data for days 2 through 10
after irrigation only. The greatest difference between
observed and calculated values is about 1 cm. Equa-
tion [20] appears to give somewhat better results
than Eq. [21], especially in the upper part of the pro-
file. This is probably a result of the textural changes
which occur at about 100 cm (Table 3). It is empha-
sized here that the predictions assume a uniform pro-
file, so that some inaccuracies may ge expected when
soil horizons with different hydraulic properties are
lumped into one profile, which is then assumed to be
uniform. Notwithstanding the apparent nonuniformi-
ty of the profile, the correspondence between measured
and predicted values after 54 days in Table 4 is cer-
tainly acceptable for most purposes where drainage
has to be estimated for large areas using a simple
mathematical model.

SUMMARY

Although only two examples were used for assessing
the accuracy and applicability of the prediction equa-
tions, it does appear that the unit gradient method
holds considerable promise as a means for estimating
long-term drainage from soils. The unknown para-
meters are easily determined, whether by direct ob-
servation or by regression analysis on observed data,
and the determinations based on shallower depths can
be used to predict drainage from deeper depths, pro-
vided the profile is reasonably uniform.
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